

Andreas Schrader

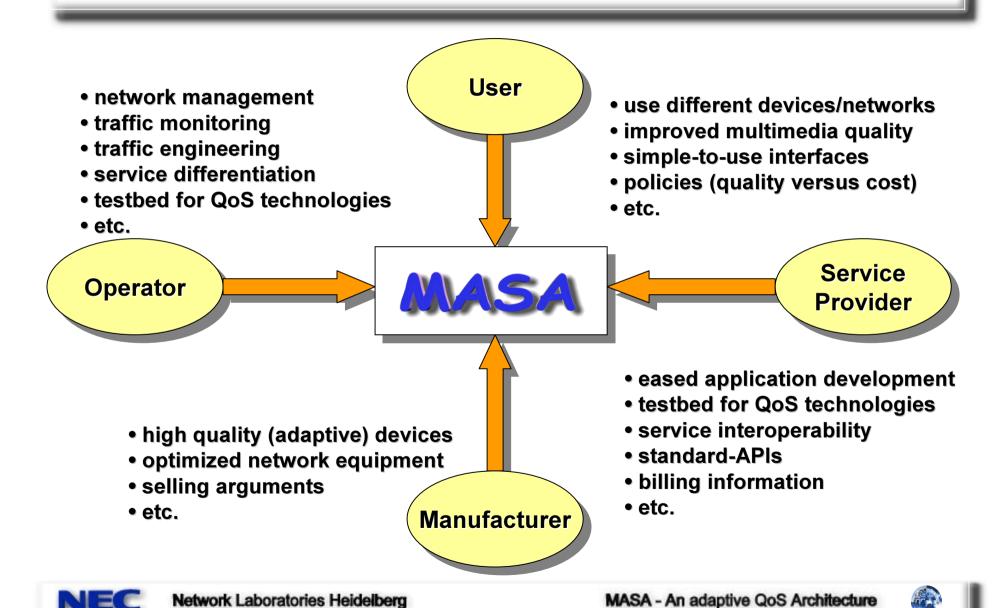
NEC Europe Ltd. Network Laboratories Heidelberg

SIEMENS

Information and
Communication Networks
Communication On Air
ICN CA MS MA 1
Corporate Technology
ZT SE 2

University of Ulm
Department for Computer Science
Distributed Systems

NEC Europe Ltd. Network Laboratories Heidelberg



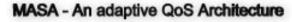
Sectioning

- Motivation
- The MASA QoS Architecture
- Adaptation Strategies
- Applications
- Video Filtering
- The MASA Project Status and Plans

Assumption (1):

Future Multimedia Communication will be performed in a very heterogeneous Environment:

Devices


Screen Sizes, Processors, Memory, Power Supplies, Interfaces, etc.

Network Access Technologies

Modem, ISDN, xDSL, Ethernet, ATM, GSM/GPRS, UMTS, etc. Different characteristics for loss rate, bandwidth, etc.

Applications

Interactive/non-interactive, realtime/non-realtime, unicast/multicast etc. E.g. IP Telephony needs low delay, Video-on-Demand needs bandwidth

Users

Different technology background and QoS requirements

likes to have an ,on/off' button

,Normal User'

,Cyborg^{*}

wants to specify the importance of certain parameters

Assumption (2): In future networks, Mobility will be essential

Terminal Mobility

supports to physically move the device and eventually to connect to a foreign network

User Mobility

supports to change the device and to have access on personal set of services in foreign networks

Session Mobility

supports to maintain ongoing multimedia sessions during user and terminal movements

MASA defines a comprehensive end-to-end QoS architecture to support QoS for adaptive real-time multimedia streaming applications in a heterogeneous mobile environment

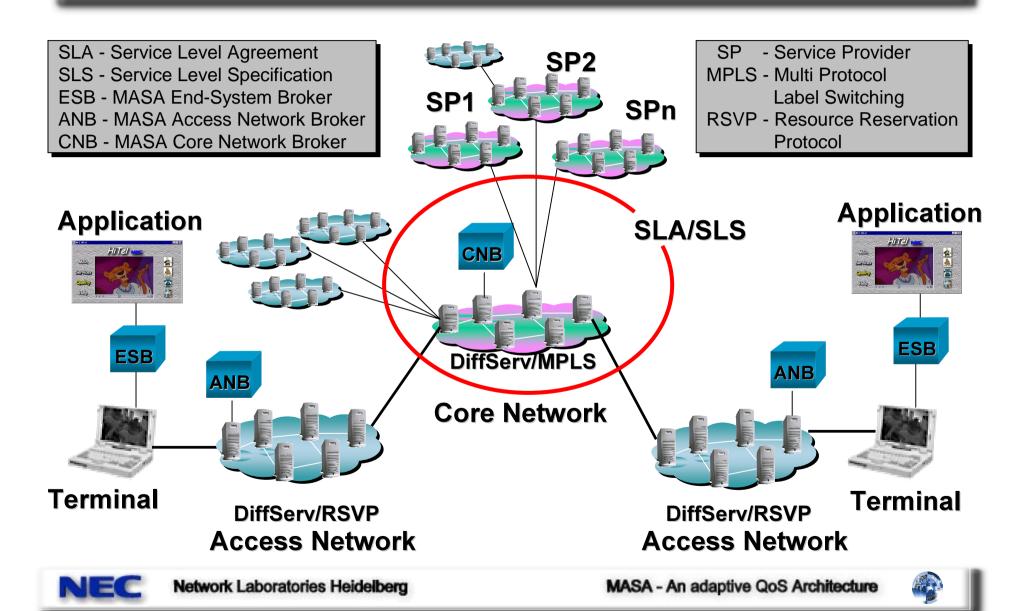
Mobility Management

 to support seamless Handoffs in heterogeneous mobile environments

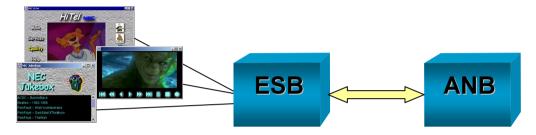
to support different access technologies
 (e.g. UMTS FDD, WirelessLAN, GSM/GPRS, Ethernet, etc.)

• QoS Management

- to manage QoS end-to-end in a co-operative way
- to integrate and orchestrate resource management
- using network layer QoS


Media Management

- to support dynamic adaptable, highquality, real-time media streaming
- to separate MediaManagement from the Application
- pure IP-solution



ESB – End-System QoS Broker

- ☐ Provision of QoS-enhanced streaming for multimedia applications
- □ Central Trading Intelligence (Adaptation)
- ☐ Local Resource Management (CPU, Memory, etc.)
- □ Analysis of Terminal Capabilities
- □ QoS Capability Exchange
- □ Policy Management (local QoS Profiles)
- ☐ DiffServ Marking, RSVP Reservation, etc.
- Communication with Access Network QoS Broker

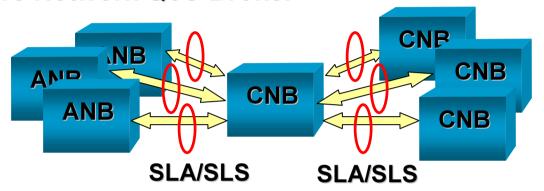
ANB – Access Network QoS Broker

CNB

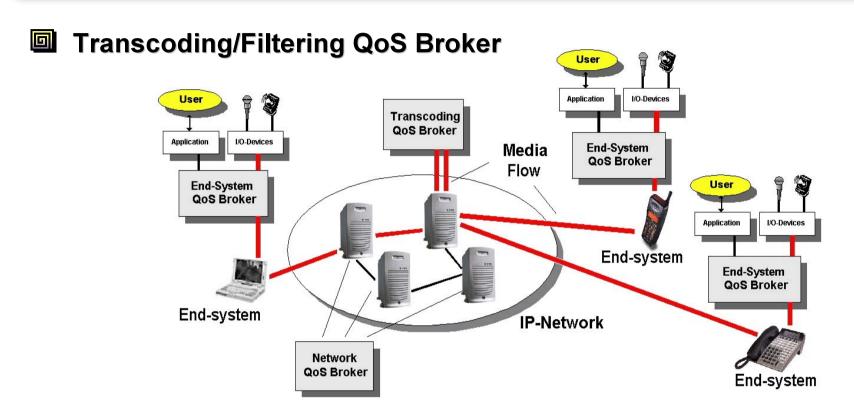
CNB

CNB

CNB

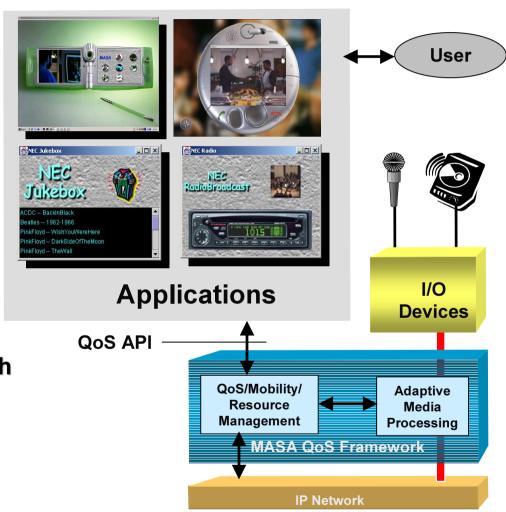

SLA/SLS

- □ Local Resource Management
 (Router-Queues, DiffServ Management, QoS Routing, etc.)
- **□** LAN Management Support
- □ Aggregation of Streams from Multiple Terminals
- ☐ Trading with Service Providers (SLA/SLS)
- □ Policy Management (IETF COPS/RSVP, COPS-PR)
- □ Using different Access Technologies
- ☐ Communication with End-System and Core Network QoS Broker


CNB – Core Network QoS Broker

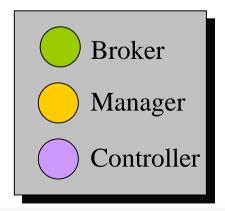
- □ Orchestration of Core Network Management
- □ DiffServ/MPLS Management
- □ QoS Mapping
- □ Interacting with several Provider Networks
- ☐ Traffic Engineering and Optimization
- QoS Routing
- □ Communication with Access and Core Network QoS Broker

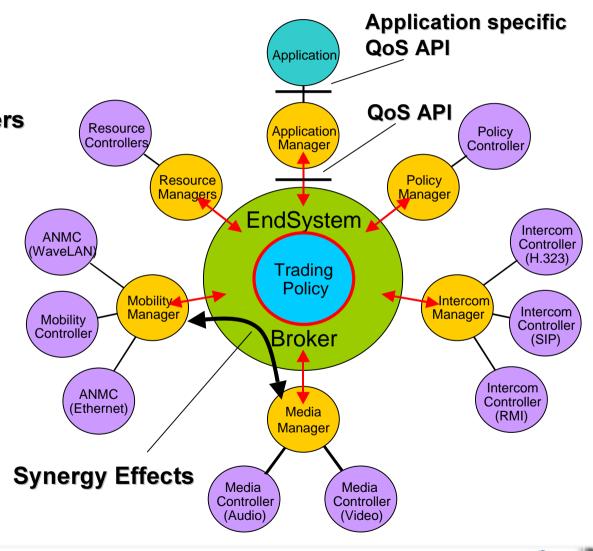
- Supporting heterogeneous devices by transcoding or filtering of media streams
- □ Placement should be optimized to avoid bandwidth wasting (probably near base stations e.g. UMTS or IEEE802.11)



End-System Broker

Separation between media **Processing and applications** allows for:


- **Media-independent application** development (GUI)
- ✓ Hiding complex media details by high-level QoS API
- ✓ Extendable Architecture through plug'n-play mechanisms
- ✓ Operating-System independent applications



Software Structure End-System Broker

> □ Broker and Managers are using event queues for monitoring results and commands

MASA - An adaptive QoS Architecture

Adaptation Strategies

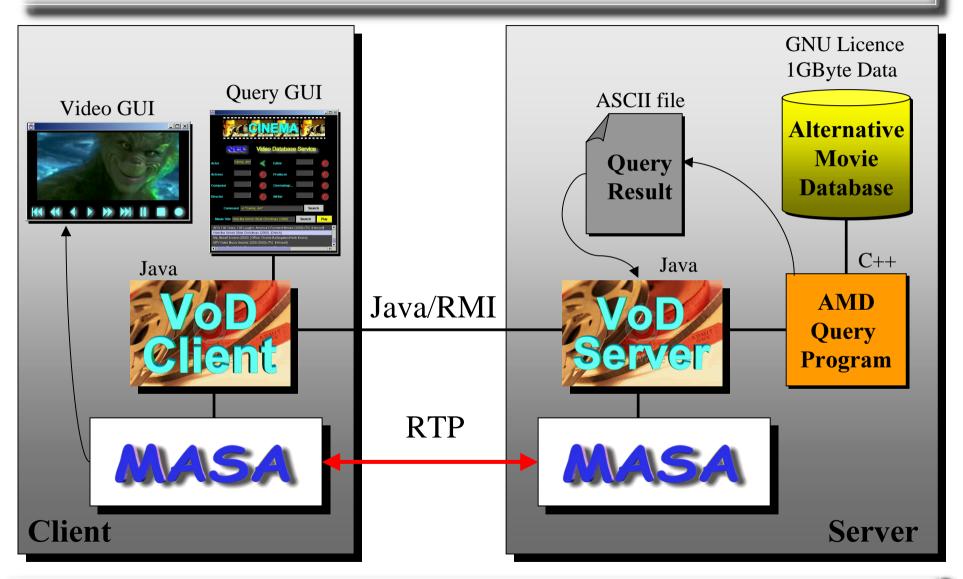
- Interaction between Mobility and Media Management allows for synergy effects
 - Intelligent handoff decisions (intra or inter-domain handoffs, intra or inter-technology handoffs)
 - Network Forced Handoffs:
 - The interface (cable) was physically removed
 - The link quality has become very low
 - The Mobility Manager informs the QoS Broker, who performs the media adaptation with the help of the Media Manager
 - □ QoS Forced Handoffs:
 - Optimization based on QoS criterias, cost or access to certain services
 - The QoS Broker decides with the help of the local trader and issues a handoff request to the Mobility Manager

Applications

Video Conferencing

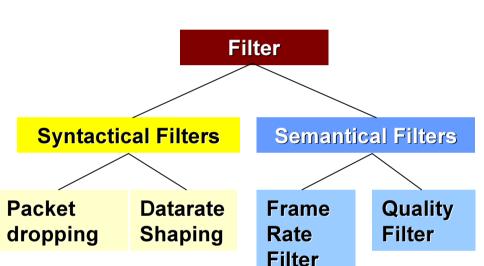
Audio Jukebox

Video on Demand (VoD)



Radio Broadcasting

Video on Demand (VoD)



Video on Demand (VoD)

MUSE - Mobile User Service Environment Quality Slider MASA - Video Preview **VCR Controls** Video Preview

Network Laboratories Heidelberg

User QoS Policies (Framerate

vs. Color

resolution)

Bandwidth filter

Framerate filter

Quality:

Bandwidth:

constant

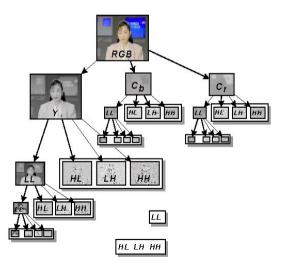
varying

adjustable

varying/fixed

Semantical Filters

RTP WaveVideo Header WaveV


WaveVideo Payload

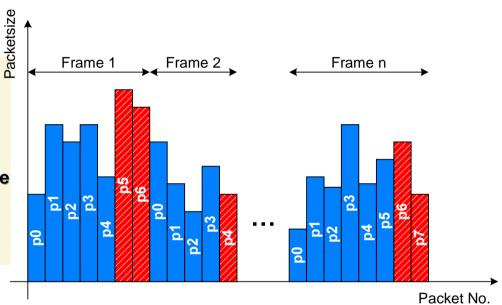
Tag contains information about:

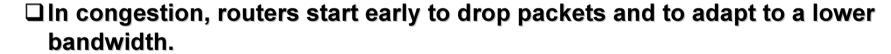
- Quality Layer
- Colour Channel
- Recursion Depth
- Spatial Filtering

Combi Filter allows adaptation of:

- Frame rate
- Frame size
- Luminance quality
- Chrominance quality

Syntactical Filter

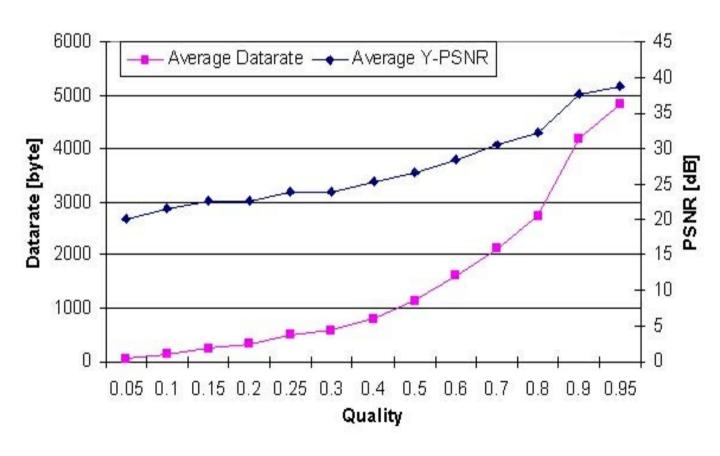

Priority Based Packet Dropping


$$m = trunc(n*q)$$

n: number of WaveVideo packets of input frame

m: number of WaveVideo packets for output

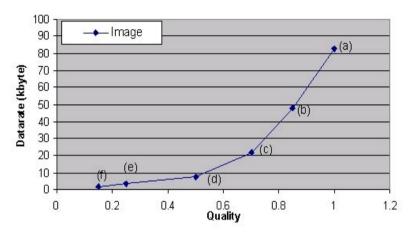
q: quality factor in [0,1], 1 is the best quality



- □ Degradation of the quality of the picture, but the stream won't be lost and no anoying artefacts will be visible.
- ☐ Implemented as WaveVideo filter plug-in in JMF.

Measurements Priority Packet Dropper

Visual Quality



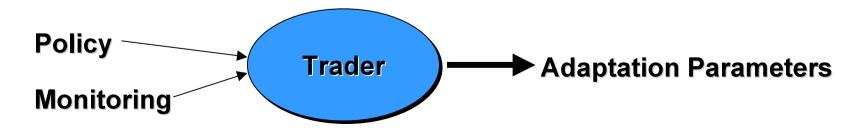
q=0.7 q=0.5

Q- factor	Datarate (byte)	Compression factor
1.0	82800	1:1
0.85	47959	1:2
0.7	21775	1:4
0.5	7697	1:11
0.25	3455	1:24
0.15	1583	1:52

Video on Demand Scenario

Beverly Hills Cop Movie (Scene) 352 x 288 pixels 25 fps

User QoS Policy:


Data rate <= 10 Mbit/s, Frame rate <= 10 f/s

A: Frame rate is more important than Frame quality

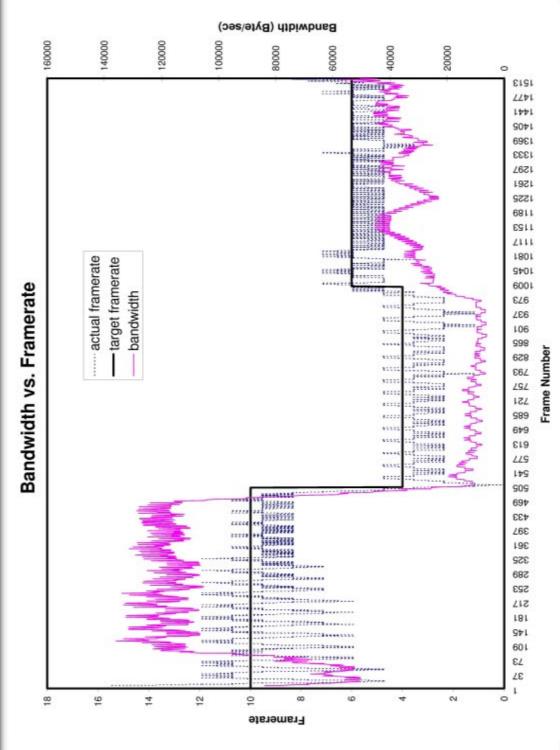
B: Frame rate is of equal importance then Frame

quality

<= 1 Mbit/s <= 200 kbit/s <= 500 kbit/s -> 10f/s, dropping -> 4 f/s, dropping a -> 6 f/s, dropping only subbands of lot of subbands less subbands highest layer **Ethernet** WaveLan 1 WaveLan 2 (bad Signal) (better Signal)

Policy A

User on the move



ZEC

Video Filtering

Phase I (Oct 1999 – Sep 2000)

Des	orgii
	□ Broker Architecture
	☐ Specification of a Mobility Management System
	☐ Design of the Media Management System
	☐ Definition of the inter-working between Mobility and Media
lmp	lementation
	☐ ESB with Mobility-, Media-, Policy-, CPU- and Intercom- Manager
	☐ Sample applications (VoD, Internet Radio, etc.)
	☐ Testbed (Mobile-IPv4, Linux/Windows) and Demonstration
Res	sults
	☐ MASA QoS Framework Design Document (ITR, 140 pages)
	☐ Publications on International Conferences
	(IEEE SoftCOM'2000, GI KIVS'2001, IEEE ASW'2001, SSGRR'2001, QofIS'2001)

Docian

Phase II (Oct 2001 – Mar 2003)

Design

- □ Overall Architecture with ESB, ANB, CNB and Transcoding Broker
- ☐ Interworking of all components (Interfaces + Protocols)
- ☐ Business Cases, Deployment Strategy, etc.

Implementation

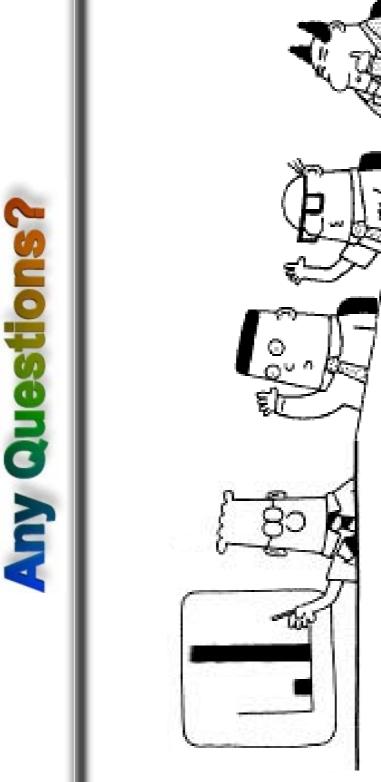
- **□** Complete Architecture
- ☐ Intelligent Trading and Resource Management Strategies
- ☐ Testbed and Demonstration

Phase II (Oct 2001 – Mar 2003)

End-System Issues

☐ Synchronized	l audio/video	streaming	(JMF/RTP)
----------------	---------------	-----------	-----------

- □ RTP monitoring for group communication
- ☐ Interworking with Transcoder/Filter
- □ Downloadable codecs
- ☐ Receiver-driven adaptation strategies
- ☐ Enhanced local resource management
- ☐ QoS adaptation policies (Cost functions)
- ☐ Trading rules to optimize RSVP and DiffServ reservations
- ☐ Terminal capability analysis and exchange (SIP/HTTP/XML)
- □ NEC RTP Filter Router integration
- ☐ DiffServ marking on End-System?
- ☐ Focus on small end-devices (K-Java)


Phase II (Oct 2001 – Mar 2003)

Access Network Broker
□ Focus on policies for aggregated streams
□ RSVP
☐ End-System Interworking
Core Network Broker
 □ Network Management (DiffServ, RSVP, MPLS, COPS, SNMP, etc.) □ Policies and SLS for aggregated inter-domain SLA □ Policy Management (IETF Framework)
Other QoS Projects at NEC
☐ Java Policy based Management System (DiffServ, MPLS)
□ RTP Filter Router
□ Alternatives to DiffServ (Olympic Model)
□ QoS for SIP (Quality Agents)
☐ DiffServ Router Product
□ etc.

